Journal of Organometallic Chemistry, 240 (1982) 277-283 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

STUDIES OF A COBALT-PROMOTED ACRYLONITRILE COUPLING REACTION

J.D. DRULINER and R.C. BLACKSTONE

Central Research and Development and Petrochemicals Departments*, E.I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898 (U.S.A.)

(Received April 2nd, 1982; in revised form June 25th, 1982)

Summary

A stoichiometric cobalt-promoted acrylonitrile (AN) coupling reaction leading to adiponitrile (ADN) formation was reinvestigated. The active catalyst appears to involve cobalt(0) species. Cobalt hydride complexes are either inactive $[CoH_2(PPh_3)_3]$ or give only low yields of ADN $[CoH(N_2)(PPh_3)_3]$. Intermediate $Co(AN)_2$ species can be reduced to give ADN using H_2S or using H_2 and Pt on C. Choice of ligand is a factor in determination of ADN yield, such yields decreasing in the order $(CH_3)_2NCHO \cong PPh_3 > P(OPh)_3 > P(CH_3)_3 > P(OC_2H_5)_3$. Formation of stoichiometric ADN yields from $Co(N_2)(PPh_3)_3$ and AN indicate that co-promoters, such as $ZnCl_2$ and $CoCl_2$, are not required. Different ADN/c.t-1,4-dicyanobutene-1 product ratios, obtained by H_2S treatment of $Co(AN)_2$ species and a known

complex, suggest that the intermediate $Co(AN)_2$ species consist mainly of polymeric structures rather than monomeric metallacyclic complexes.

Introduction

A stoichiometric cobalt-promoted acrylonitrile (AN) coupling reaction has been reported [1].

DME

$$2 \operatorname{CH}_2 = \operatorname{CHCN} + \operatorname{Mn} + \operatorname{CoCl}_2 + 2 \operatorname{H}_2 O \xrightarrow{\operatorname{DMn}}$$

$$NC(CH_2)_4CN + MnCl_2 + Co(OH)_2 \qquad (1)$$

^{*} Contribution No. 2444.

The reaction was reported to occur in two stages. In the first, a dimethylformamide (DMF) solvated complex derived from two molecules of AN and one atom of cobalt was formed. In the second, the complex could be decomposed with aqueous bases or H_2S to give adiponitrile (ADN). In this paper we report the results of studies which bear on the mechanism of this coupling reaction. Contrasting reactions between AN and olefins with Co(N₃)(PPh₃)₃ (Ph = C₆H₅), CoH(N₂)(PPh₃)₃ and Co(H₂)(PPh₃)₃ are also discussed.

Experimental

All preparations and experiments were carried out under nitrogen atmosphere using a model HE432 Vacuum Atmospheres dry box. Solvents were purified by distillation or by treatment with neutral alumina. Analyses for AN and propionitrile (PN) were carried out using a $6' \times 1/8''$ Poropak QS column at 180°C. Analyses for ADN were carried out using a $8' \times 1/8''$ Tenax column at 230°C. Analyses for hexenes and hexane were carried out using a $20' \times 1/8''$ XE-60 column at 60°C. IR measurements were carried out using a Perkin–Elmer model 137 spectrophotometer.

Reaction of $CoI(PPh_3)_3$ with AN. Into a 4 ml vial containing a Teflon[&] coated stirring bar was charged 0.085 g (0.087 mmol) CoI(PPh_3)_3 followed by 1.60 g of a pre-mixed DMF/AN solution containing 0.016 g (0.29 mmol) AN. The green CoI(PPh_3)_3 complex reacted rapidly to give a dark red solution. A gradual reaction of AN was indicated by GLC analyses for unreacted AN.

AN (wt%)		
0.92 (calc)		
0.80		
0.71		
0.65		
0.66		
	AN (wt%) 0.92 (calc) 0.80 0.71 0.65 0.66	

After stirring 16 h, the vial was transferred to a fume hood and gently sparged with H_2S for 5 min. The resulting black slurry was allowed to stand for 1 h followed by GLC analysis for ADN. The observed wt% ADN was 0.22% (max. calc. 0.56% ADN). The ADN yield based on a maximum of 1 ADN/Co was 39%. The ADN yield based on converted AN was 79%. The analyses for AN showed no detectable PN.

Reaction of $Co(N_2)(PPh_3)_3$ with 1-hexene. A 4 ml serum-capped vial was charged with 0.5 ml of a 0.3 M Co(N₂)(PPh₃)₃ solution in toluene followed by 0.020 ml 1-hexene. After 2 h a GLC analysis showed the presence of a mixture of linear hexene isomers with no detectable hexane.

Reaction of propylene with ortho-deuterated $Co(N_2)(PPh_3)_3$ [$Co(N_2)(P-d_6)_3$]. A 10 ml stainless steel tube was charged with 0.1 g (0.11 mmol) $Co(N_2)(P-d_6)_3$ dissolved in 2 ml benzene. The tube was cooled in dry ice and charged with 0.5 g (11.9 mmol) propylene. The tube was agitated for 16 h at room temperature. The liquid phase of the reaction product was analyzed by GLC mass spectroscopy for propylene and hexenes (Discussion section).

Preparation and characterization of $Co(N_2)(PPh_3)_3$. $Co(N_2)(PPh_3)_3$, free of $CoH(N_2)(PPh_3)_3$, was prepared according to the procedure of Speier and Marko.

Experimentally determined N \equiv N stretching frequencies (2093, THF and 2085 cm⁻¹, Nujol) duplicated published values [2]. The magnetic susceptibility parameter, χ_g , (1.6 × 10⁻⁶) agreed well with the published value (1.7 × 10⁻⁶) [3].

Results

Effect of cobalt complex on ADN yield. Several cobalt complexes were examined in place of $CoCl_2 + Mn$ and gave varying ADN yields (Table 1). High ADN yields can be obtained in solvents other than DMF provided excess PPh₃ is present and provided AN is added after $Co(N_2)(PPh_3)_3$ is pre-dissolved in solvent to dilute it. Treatment of $Co(N_2)(PPh_3)_3$ with neat AN results in rapid exothermic polymerization of AN. Typical yields to ADN using $Co(N_2)(PPh_3)_3$ were 90–100% (DMF). 90–100% (THF), 35–50% (PhCN), and 40–90% (benzene). Solutions of $Co(N_2)(PPh_3)_3$ in DMF or dimethylacetamide were shown to be only moderately stable over a period of days [4].

IR and NMR spectra and structure of the Co(AN)₂ complex. The reddish-brown intermediate complex obtained from CoI(PPh₃)₃/AN/DMF (Experimental section) gave an elemental analysis indicating the stoichiometry Co/AN/DMF/PPh₃/I equal to 1/2/1/0.3/0.3. Calculated Co/C/H/N/P/I ratios were 1/14.8/17.8/3.0/0.3/0.3. Observed ratios were 1/13.2/18.7/2.9/0.32/0.31. The infrared spectrum of this Co(AN)₂ complex is characterized by a strong broad adsorption at ~ 2200 cm⁻¹ in Nujol or in reaction product solutions. This absorption does not allow a differentiation to be made between σ - or π -bonding of the coordinated AN. For example, representative C=N stretching frequencies for AN π -bonded to low valent metals are 2194 cm⁻¹ AN · Ni[P(O-o-tolyl)₃]₂, 2195 cm⁻¹ AN · Pt(PPh₃)₂ and 2227 cm⁻¹ AN · Fe(CO)₄ [5]. The C=N stretching frequency for σ -bonded AN in Cp(CO)₂FeCH(CH₃)CN is 2210 cm⁻¹ [6].

TABLE I

Co Complex	ADN/Co			
$\overline{\text{CoCl}_2 + \text{Zn}(\text{Mn})}$	1.02			
CoI(PPh ₃) ₃ [12]	0.39, 0.48, 0.34 ^b			
$CoI(PPh_3)_3 + Zn$	1.11			
CoH(N ₂)(PPh ₃) ₃ [13]	$0.36 (+0.41 \text{ mol } \text{CH}_3 \text{CH}_2 \text{CN})$			
$Co(N_2)(PPh_3)_3$	0.94			
CoH(PPh ₃) ₃	0			
$Co[P(CH_3)_3]_4$ [14]	trace			
CoH[P(OPh) ₃] ₃ ·CH ₃ CN [15]	trace			
CoH[P(OPh ₃] ₄ [15]	0			
CoCl[(OPh) ₃] ₃ [16]	0.10			
$C_0Cl[(OC_2H_2)_3]_3[17]$	0			
CoP(OPh ₃] ₃ [18]	trace			

YIELDS TO ADIPONITRILE FOR REACTION OF ACRYLONITRILE WITH COBALT COMPLEXES " $\ensuremath{\mathsf{^{\circ}}}$

" Reactions carried out in DMF solvent at 25°C with H_2S workup as shown in Experimental for the reaction of CoI(PPh₃)₃ with AN and using 2.5 to 8 mol AN/mol Co.^b Duplicate experiments showing range of variability.

$$\begin{array}{ccc}
CN & CN & CN \\
\downarrow & \downarrow & \downarrow \\
L_nCo(CH)_2 & \sim LnCo-CH-(CH_2)_2-CH-CoLn \sim \\
\parallel & CH_2 \\
\pi-bonded AN & \sigma-bonded AN
\end{array}$$

A C-H stretching frequency for the Co(AN)₂ complex at ~ 2900 cm⁻¹ (KBr) is also consistent with either saturated $\sim CH_2 \sim$ groups from coupled AN or with the C-H from AN π -bonded to Co. For example, the aliphatic C-H stretching frequency for AN \cdot Ni[P(O-o-tolyl)₃]₂ was found to be ~ 2900 cm⁻¹ (KBr). The highly insoluble nature of the reddish-brown Co(AN)₂ complex, precipitated from DMF by addition of hydrocarbon solvents or by removal of solvent for reactions carried out in THF, tends to suggest a polymeric structure(s) rather than a monomolecular species.

Attempts to obtain well resolved ¹³C or ¹H NMR spectra were not successful due to low solubilities of several samples of Co(AN)₂ complexes. Typical spectra contained, in addition to aromatic absorption of PPh₃ groups, only broad complex multiplets. In contrast, the ¹H NMR spectrum of a monoacrylonitrile complex, CpCo(AN)PPh₃ (1), formed by rapid room temperature reaction of AN with CpCo(PPh₃)₂, gave well resolved 1/1/2 olefinic ¹H NMR resonances at δ 2.7, 1.5 and 1.1 ppm, in close analogy to the known complex Ni[P(O-o-tolyl)]AN whose olefinic ¹H NMR resonances occur \approx : δ 2.9, 1.3 and 1.2 ppm [7].

Deuterium and trimethylsilylation labeling experiments. The Co(AN)₂ complex was worked up using Me₃SiCl as well as various reducing agents containing deuterium to try to determine the number of Co-C bonds hydrogenolyzed to give ADN. The ortho-deuterated complex Co(N₂)(P-d₆)₃, prepared using ortho-deuterated PPh₃, was treated with AN to test for the intervention of ortho-metallated intermediates [8]. The product following H₂S workup was shown by GLC-mass spectroscopy to contain 98-99% ADN-d₀ with < 1-2% ADN-d₁. These results do not support the

Cobalt complex	Reductiv s agent	ADN/Co	Product ADN			
			No. D/ADN	Isomer distribution		
				$\overline{d_0}$	<i>d</i> ₁	<i>d</i> ₂
CoI(PPh ₃) ₃ /DMF	D_2/Pt	0.37	0.62	48	42	10
$CoCl_{2}/Zn/DMF^{a}$	D,S	0.39	1.36	11	42	47
CoCl ₂ /Zn/DMF ^a	D_{2}/Pt	0.38	0.39	65	31	4
$Co(N_2)(P-d_6)_3/THF^b$	D_2^{-S}	0.50	0.28	73	26	1
$Co(N_2)(P-d_6)_3/THF^b$	$\overline{D_2}/Pt$	0.33	0.34	72	22	6
Co(N2)(PPh3)3/THF	DCl/D ₂ O	0.29	1.09	0	92	5

EXTENT OF DEUTERATION OF ADN PRODUCT FROM TREATMENT OF Co(AN)₂ COM-PLEXES WITH VARIOUS REDUCING AGENTS AT 25°C

" Same product initiate from reaction of $CoCl_2/Zn/DMF$ used. Same product mixture from reaction of $Co(H_2)(P-d_6)_1/THF$ used.

TABLE 2

involvement of *ortho*-metallated species in the AN coupling step. The possibility that hydrogen could be abstracted from solvent was also checked by using DMF- d_7 . No significant abstraction was observed with Co(N₂)(PPh₃)₃ (>99% ADN- d_0 . < 0.5% ADN- d_1) and a limited amount was obtained with Col(PPh₃)₃ (89% ADN- d_0 , 10% ADN- d_1 , 1% ADN- d_2).

Several ADN workups were carried out using D_2S , DCl/D_2O , D_2/Pt , and D_2/Pd to try to determine whether one or two Co-C bonds in the Co(AN)₂ complex could be cleaved to give ADN- d_1 or ADN- d_2 , respectively (Table 2). Deviation of the D/ADN values from 1.0 or 2.0 indicated that exchange of deuterium with sources of hydrogen possibly occurred prior to hydrogenolysis of the Co(AN)₂ complex. Isotopic exchange between deuterium and hydrogen was shown to occur. Mass spectral analysis of the vapor from reaction of CoCl₂/Zn/AN/DMF, following reduction of the Co(AN)₂ complex solution with D₂, gave a completely equilibrated hydrogen product vapor:

	D ₂	HD	H ₂	Fraction deuterated
Found	59.3	34.6	6.1	0.765
Calcd.	58.6	35.9	5.5	

The calculated values are theoretical for a hydrogen mixture containing 76.5% D. 23.5% H. Since hydrogen abstraction was shown not to take place with DMF solvent or the *ortho*-hydrogens of PPh₃ ligands, it is most likely that AN undergoes hydrogen exchange.

Although loss of isotopic purity in deuteration experiments precluded their use as a probe for the number of Co-C bonds cleaved in ADN formation, Me₃SiCl was successfully used. Treatment of a solution obtained by reaction of CoI(PPh₃)₃ with AN in DMF gave rise to only one silicon-containing compound eluting in the range of ADN by GLC-mass spectroscopy. A peak with a m/e = 252, consistent with NCCH(SiMe₃)CH₂CH₂CH(SiMe₃)CN, was observed. No peak with a m/e = 180 for NC(CH₂)₃CH(SiMe₃)CN was observed, indicating that two Co-C bonds in the Co(AN)₂ complex were cleaved to give ADN.

Discussion

Characterization of $Co(AN)_2$ complexes. Achievement of a stoichiometric yield of ADN with the $Co(N_2)(PPh_3)_3$ complex indicates that a cobalt(0) species may be required for the AN coupling step (Table 1). The cobalt dihydride complex, $CoH_2(PPh_3)_3$, was not active. Reaction of AN with $CoH(N_2)(PPh_3)_3$ gave hydrogenation of AN to PN accompanied by a low yield of ADN. perhaps via disproportionation of $CoH(N_2)(PPh_3)_3$ to give small amounts of cobalt(0) species. The results in Table 1 show that formation of the intermediate $Co(AN)_2$ complexes does not require additional promoters such as $ZnCl_2$ or $CoCl_2$. Reduction of the $Co(AN)_2$ complexes to give ADN can also be done using H_2 and Pt on C (Table 2).

Although IR and NMR measurements could not distinguish between monomeric Co-containing metallacycles or oligomeric structures (II), a recent report [9] of a well characterized complex III suggests that the $Co(AN)_2$ complexes may contain some metallacyclic structures (II).

The contrast between the reactivities of $CpCo(PPh_3)_2$ and $CoI(PPh_3)_3$ is striking. CoI(PPh_3)_3 reacts rapidly with excess AN at room temperature to give a $Co(AN)_2$ complex which gives, upon H₂S treatment, ~ 0.4 mol ADN/Co. Room temperature treatment of $CpCo(PPh_3)_2$, on the other hand, gives $CpCo(AN)PPh_3$ which in turn reacts with excess AN to give III only upon prolonged heating at 100°C [9]. A sample of III, when treated with H₂S at room temperature, gave only ~ 5% ADN plus about equal amounts of c, t-1, 4-dicyanobutene-1 [10]. The low ADN yield perhaps reflects added stability from the Cp group. Formation of only traces of c, t-1, 4-dicyanobutene-1 with the Co(AN)₂ complexes indicates that most of the Co is not in the form of metallacyclic structures.

Contrasting reactivities of AN and olefins with $Co(N_2)(PPh_3)_3$ and $CoH_2(PPh_3)_3$. Olefins are rapidly isomerized with $Co(N_2)(PPh_3)_3$ and hydrogenated with $CoH_2(PPh_3)_3$ [2]. Coupling of olefins also occurs with $Co(N_2)(PPh_3)_3$ [11]. Significant deuteration of products and starting material was found in the case of propylene dimerization using ortho-deuterated $Co(N_2)(PPh_3)_3$ [Co $(N_2)(P-d_6)_3$] (Experimental Section).

Propylene			Hexenes			
<i>d</i> ₀	d_1	<i>d</i> ₂	d ₀	<i>d</i> ₁	<i>d</i> ₂	-
93.3	5.2	1.5	78.6	11.6	9.8	

Since the ADN from AN coupling with $Co(N_2)(P-d_6)_3$ gave only minor amounts of ADN- d_1 and no ADN- d_2 , it is likely that ortho-metallated intermediates are involved in propylene dimerization but not in AN dimerization. Treatment of $Co(N_2)(PPh_3)_3$ with H_2 afforded $CoH_2(PPh_3)_3$ which stoichiometrically converted 1-hexene to hexane, in agreement with published results for 1-heptene hydrogenation [2]. It was also found that AN, unlike propylene when treated with $CoH_2(PPh_3)_3$, appears to undergo neither hydrogenation to PN nor coupling to complexes which afford ADN on treatment with H_3S .

Acknowledgements

The authors wish to thank Drs. D.R. Coulson, R.J. McKinney and T.H. Tulip for helpful discussions and F.G. Kitson for mass spectral analyses.

References

- 1 G.P. Chiusoli, G. Agnes, and G. Cometti, Chem. Commun., (1968) 1515.
- 2 G. Speier and L. Marko, Inorg. Chim. Acta, 3 (1969) 126.
- 3 The NMR method of Evans was used for measuring X_g: D.F. Evans, J. Chem. Soc., (1973) 2587.
- 4 A slow reaction was shown to take place wherein CO was abstracted from solvent to give cobalt

carbonyl complexes. Loss of the N \equiv N stretching frequency at 2093 cm⁻¹ can be followed along with growth of a CO stretching frequency at ~1904 cm⁻¹.

- 5 C.A. Tolman and W.C. Seidel, J. Amer. Chem. Soc., 96 (1974) 2774.
- 6 J.K.P. Ariyarante and M.L.H. Green, J. Chem. Soc., (1963) 2976.
- 7 A.E. English, L.E. Manzer and C.A. Tolman, Inorg. Chem., 14 (1975) 2353.
- 8 A sample of *ortho*-deuterated PPh₃ was obtained from Dr.U. Klabunde, E.I. du Pont de Nemours & Co.
- 9 Y. Wakatsuki and H. Yamazaki, J. Chem. Soc. Commun., (1980) 1270.
- 10 A sample of III was kindly provided by Y. Wakatsuki [9].
- 11 G. Speier, J. Organometal. Chem., 97 (1975) 109.
- 12 M. Aresta, M. Rossi and A. Sacco, Inorg. Chim. Acta, 3 (1969) 227.
- 13 A. Yamamoto, S. Kitazume, L.S. Pu and S. Ikeda, Chem. Commun., (1967) 79.
- 14 H. Klein and H.H. Karsch, Chem. Ber., 108 (1975) 944.
- 15 L.W. Gosser, Inorg. Chem., 15 (1976) 1348.
- 16 L.W. Gosser, Inorg. Chem., 16 (1977) 427.
- 17 L.W. Gosser and G.W. Parshall, Inorg. Chem., 13 (1974) 1947.
- 18 L.W. Gosser, Inorg. Chem., 14 (1975) 1453.